Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yu-Xi Sun,* Gen-Zhi Gao, Rui Zhang and Hong-Xia Pei

Department of Chemistry, Qufu Normal University, Qufu 273165, People's Republic of China

Correspondence e-mail: yuxisun@163.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.043$
$w R$ factor $=0.121$
Data-to-parameter ratio $=17.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Azido[1-(isobutylaminomethyliminomethyl)-2-naphtholato]nickel(II)

The title compound, $\left[\mathrm{Ni}\left(\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}\right)\left(\mathrm{N}_{3}\right)\right]$, is a mononuclear nickel(II) complex. The $\mathrm{Ni}^{\mathrm{II}}$ atom is four-coordinated by two N atoms and one O atom of the Schiff base ligand, and another N atom from an azide anion, forming a slightly distorted square-planar coordination configuration.

Comment

Transition metal compounds are present in the active sites of several important classes of metalloproteins. The study of Schiff base compounds is of great interest in various aspects of chemistry (Downing \& Urbach, 1969; Ganeshpure et al., 1996; Bosnich, 1968; Costes et al., 1995).

(I)

The title complex, (I), is a mononuclear nickel(II) compound (Fig. 1). The $\mathrm{Ni}^{\mathrm{II}}$ atom is four-coordinated by two N atoms and one O atom of the Schiff base ligand, and another N atom from an azide anion, forming a slightly distorted squareplanar coordination configuration. The four coordinating atoms around the Ni centre are approximately coplanar, giving a square-planar geometry with an average deviation of 0.014 (6) \AA; the Ni atom lies 0.020 (3) \AA above this plane. The

Figure 1
The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Received 10 January 2005
Accepted 18 January 2005 Online 29 January 2005

Ni1 - O1 bond length [1.817 (2) \AA; Table 1] is a little greater than the corresponding value $[1.837$ (3) \AA] observed in another nickel(II) complex (Zhu et al., 2004). The Ni1 - N1 bond length in (I) $[1.838$ (2) \AA] is a little less than the corresponding value $[1.845$ (3) \AA] observed in the same complex.

As illustrated in Fig. 2, in the crystal structure of (I), the molecules stack along the a axis and are linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2).

Experimental

2-Hydroxy-1-naphthaldehyde $(0.2 \mathrm{mmol}, \quad 17.2 \mathrm{mg})$ and N, N -dimethylethane-1,2-diamine ($0.2 \mathrm{mmol}, 17.6 \mathrm{mg}$) were dissolved in ethanol $(10 \mathrm{ml})$. The mixture was stirred for 15 min to give a clear yellow solution. To this solution was added an aqueous solution (5 ml) of $\mathrm{NaN}_{3}(0.1 \mathrm{mmol}, 5.5 \mathrm{mg})$ and an ethanol solution (5 ml) of $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{mmol}, 24.4 \mathrm{mg})$, with stirring. The mixture was stirred at room temperature for about 30 min and then filtered. After allowing the green filtrate to stand in air for 11 d , green block-shaped crystals of (I) were formed at the bottom of the vessel on slow evaporation of the solvent.

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}\right)\left(\mathrm{N}_{3}\right)\right]$
$M_{r}=342.05$
Orthorhombic, , Pbca
$a=7.576(1) \AA \AA^{2}$
$b=13.300(2) \AA$
$c=30.306(2) \AA$
$V=3053.7(6) \AA^{3}$
$Z=8$
$D_{x}=1.488 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 7800 reflections
$\theta=2.7-27.5^{\circ}$
$\mu=1.28 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, green $0.29 \times 0.12 \times 0.10 \mathrm{~mm}$

Data collection

Bruker APEX area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

3488 independent reflections 2859 reflections with $I>2 \sigma(I)$

$$
R_{\mathrm{int}}=0.026
$$

$$
\theta_{\max }=27.5^{\circ}
$$

$$
h=-9 \rightarrow 9
$$ $T_{\text {min }}=0.708, T_{\text {max }}=0.883$

$$
k=-16 \rightarrow 16
$$

24371 measured reflections

$$
l=-39 \rightarrow 39
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0564 P)^{2}\right.$
$+2.2975 P]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\text {max }}=0.97 \mathrm{e}^{\circ}{ }^{-3}$
$S=1.08$
3488 reflections
201 parameters
H -atom parameters constrained
Table 1
Selected geometric parameters ($\left(\AA,^{\circ}\right)$.

Ni1-O1	$1.817(2)$	Ni1-N3	$1.900(3)$
Ni1-N1	$1.838(2)$	Ni1-N2	$1.952(2)$
O1-Ni1-N1	$94.0(1)$	O1-Ni1-N2	$179.1(1)$
O1-Ni1-N3	$89.5(1)$	N1-Ni1-N2	$86.8(1)$
N1-Ni1-N3	$176.0(1)$	$\mathrm{N} 3-\mathrm{Ni} 1-\mathrm{N} 2$	$89.7(1)$

Figure 2
The crystal packing of (I), viewed along the a axis. The $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are shown as dashed lines (Table 2).

Table 2
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4-\mathrm{H} 4 B \cdots \mathrm{O}^{\mathrm{i}}$	0.97	2.56	$3.327(3)$	136
Symmetry code: (i) $-x+\frac{3}{2},+y-\frac{1}{2}, z$.				

The H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.97 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXTL.

The authors thank Qufu Normal University for funding this study.

References

Bruker. (2002). SMART (Version 5.628), SAINT (Version 6.02) and SHELXTL (Version 5.1), Bruker AXS Inc., Madison, Wisconsin, USA.
Bosnich, B. (1968). J. Am. Chem. Soc. 90, 627-632.
Costes, J. P., Dominiguez-Vera, J. M. \& Laurent, J. P. (1995). Polyhedron, 14, 2179-2187.
Downing, R. S. \& Urbach, F. L. (1969). J. Am. Chem. Soc. 91, 5977-5983.
Ganeshpure, P. A., Tembe, G. L. \& Satish, S. (1996). J. Mol. Catal. A, 113, L423-L425.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany;
Zhu, B., Ruang, W. \& Zhu, Z. (2004). Acta Cryst. E60, m634-m636.

